Grade 12 Math Ch 5 - 8
Grade 12
Math
Textbook
πSpecial Guide Bookπ
Chapter 5
Permutation and Combination
(Pg. 71)
5.1 Counting Principle
5.1.1 Multiplication Principle
5.1.2 The Addition Principle
Example 2 & 3 (Pg. 73)
Example 4 (Pg 74)
(Multi + Add)
Example 5 (Pg. 75)
5.1.3 Factorial Notation (Pg. 75)
Example 6 & 7
Exercise 5.1
No.1 & 2(Pg. 76)
Exercise 5.1
No.3 & 4 (Pg. 76)
Exercise 5.1
No. 5 (Pg. 77)
5.2 Permutation (Pg. 78)
Example 7 & 8
No. 1,2 & 3 (Pg. 81)
Exercise 5.2
No. 4 & 5 (Pg. 81)
Not Yet Finish (Left -Notes for 5.3 and 5.4, Example from 8 - 28 and Ex 5.3 and 5.4)
Chapter 6
Conic Sections (Pg. 91)
6.1 Introduction
6.2 Cycle (Pg. 91)
Example 1-6 (Pg. 91)
Exercises 6.1
No.1 & 2 (Pg. 94)
Exercises 6.1
No. 3 (Pg. 95)
6.3 Parabola
Pg. 96
Example 8 & 9 (Pg. 99)
Exercise 6.2
No.1 (Pg. 102)
Exercise 6.2
No.2 (Pg. 102)
Translation of Axes (Pg. 102)
Translated Parabola (Pg. 104)
Exercise 6.3 (Pg. 110)
No. 1 (a & b)
Exercise 6.3 (Pg. 110)
No. 1 (c - e)
Exercise 6.3 (Pg. 110)
No. 2
6.4 Rotation of Axes (Pg. 110)
Elimination the x'y' term (Pg. 112)
Example 19 (Pg. 113)
Chapter 6
Example 20 (Pg. 114)
Exercise 6.4 (Pg. 117)
No. 1
Exercise 6.4 (Pg.117)
No. 3 & 4
Chapter 7
Trigonometric Functions
7.1 Graphs of Sine Functions
(Pg. 118)
Chapter 7
Example 1 (Pg. 119)
From the graph of y=sin x to the graph of y= a sin bx, a>0, b>0
Pg. 122
Example 3 (Pg. 125)
Y= a sin b (x-h) + k
Example 4 (Pg. 126)
Y= - a sin b (x-h) + k
Chapter 7
Exercise 7.1
No. 1 (Pg. 127)
Exercise 7.1
No.2 (a & b) (Pg. 127)
Exercise 7.1
No.3 (a & b) (Pg. 127)
Exercise 7.1
No.4 (a & b) & 5 (Pg. 127)
7.1 Graphs of Cosine Functions (Pg. 127)
Graphs of Cosine Functions y = Cos x
Example. 7
Chapter 7
Graphs of Cosine Functions y= a cos b (x-h) + k , a > 0 , b > 0 (Pg. 129)
Example 6
Exercise7.2
y=cos x
No.1 (131)
Exercise 7.2
No.2 (a & b) (Pg, 131)
Exercise (7.2)
No. 3 (a & b) (Pg. 131)
Exercise 7.2
y= a cos b (x-h) + k
No. 4 &
f (x) = f (-x)
No.5 (Pg. 131)
7.3 Graphs of other Trigonometric Functions (Pg. 131)
y= tan x
7.3 Graphs of other Trigonometric Functions (Pg. 132)
y= cot x
Chapter 7
Example 7 (Pg. 132)
Chapter 7
y= sec x and y = csc x
Exercise7.3
No. 1 & No. 2 (Pg. 133)
Exercise7.3
No. 3, 4 & 5 (Pg. 133)
7.4 Inverse Trigonometric Functions (Pg. 134)
Exercise 7.4
No. 1, 2, 3, 4, & 5 (Pg. 137)
7.5 Differentiation of Trigonometric Functions (Pg. 137)
Examples and Exercises (7.5) to be completed.
Chapter 8
Logarithmic and Exponential Functions (Pg. 143)
8.1 Logarithmic Functions
Example 2 (Pg.148)
Exercise 8.1
No.1 (Pg. 150)
Exercise 8.1
No. 2 - 4 (Pg. 150)
8.2 Differentiation of Logarithemic Functions (Pg. 151)
Chapter 8
Example 3, 4 & 5 (Pg. 152)
Exercise 8.2
No. 1 & 2 (Pg. 155)
8.3 Exponential Functions (Pg. 156 -)
Example 6 & 7
Exercise 8.3
No.1, 2 & 3 (Pg. 165)
8.4 Differentiation of Exponential Function (Pg. 165)
Example 8, 9 & 10
No. 1, 2 & 3 (Pg. 168)
Comments
Post a Comment